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Part 1
Conformal symmetry

(Physical foundations & Basics,
Ising model as an example) 
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The simplest 

- experimentally relevant
- unsolved

Conformal Field Theory is 3D Ising Model @ T=Tc

The subject of these lectures is:

It’s also an ideal playground to explain the technique of 
conformal bootstrap...
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cubic lattice

Basics on the Ising Model

→ Paradigmatic model of ferromagnetism

M- spont. magnetization

TTc
Critical temperature (Curie point)
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For T>Tc : correlation length

It is also conformally invariant 

At T=Tc:

[conjectured by Polyakov’71]

Correlation length
Critical point can also be detected by looking at the spin-spin correlations

Critical theory is scale invariant: 
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2D Ising Model

• free energy solved by Onsager’44 on the lattice and for any T

• Polyakov noticed that is conf. inv. at T=Tc

• In 1983 Belavin-Polyakov-Zamolodchikov identified the critical 
2D Ising model with the first unitary minimal model
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3D Ising Model

• Lattice model at generic T is probably not solvable

• Critical theory (T=Tc) in the continuum limit might be solvable

[many people tried]

[few people tried,
conformal invariance poorly used]
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Existing approaches to 3D Ising

• Lattice Monte-Carlo

• High-T expansion on the lattice [~strong coupling expansion]

Expand exponential in

Converges for T>> Tc , extrapolate for T→ Tc by Pade etc
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Existing approaches to 3D Ising 

• RG methods

3D Ising CFT

perturbed by
free scalar
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Physical Origins of CFT

RG Flows:

CFTUV CFTIR

Fixed points = CFT

[Rough argument:                                     when                 ]T µ
µ = β(g)O → 0 β(g) → 0

1

T µ
µ = β(g)O → 0 β(g) → 0

1
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“Free to 3D Ising CFT” flow in more detail

CFTUV = free scalar

Z2-preserving perturbation: 
T µ
µ = β(g)O → 0 β(g) → 0

m
2
IR = m

2
UV +O

�
λ2

16π2

�

m
2
IR > 0 m

2
IR < 0

1

massive theories in IR

Z2 spont. broken

strong coupling

CFT

T µ
µ = β(g)O → 0 β(g) → 0

m
2
IR = m

2
UV +O

�
λΛUV

16π2

�

m
2
IR > 0 m

2
IR < 0

1

T µ
µ = β(g)O → 0 β(g) → 0

m
2
IR = m

2
UV +O

�
λ2

16π2

�

m
2
IR > 0 m

2
IR < 0

1

IR physics phase diagram:
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Universality

 Near Tc the spin-spin correlation length ξ(T)→ ∞
⇒ lattice artifacts go away

Continuum limit @ T=Tc is the same CFTIR as on the previous slide

- Any same-symmetry Lagrangian (e.g. φ6 coupling ≠0) can flow to the same 
CFTIR

- In particular can even start from a lattice model like 3D Ising model
or any modification (e.g. add next-to-nearest coupling)
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Existing approaches to 3D Ising 

• RG methods

3D Ising CFT

perturbed by
free scalar

Parisi... try to describe this fixed point by using renormalizable Lagrangian 
[?? since nonperturbative] + Borel resummation tricks

Wilson, Wegner… use Exact Renormalization Group [flow in the space of 
non-renormalizable Lagrangians]
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Existing approaches to 3D Ising 

• ε - expansion [Wilson, Fischer]

Fixed point becomes weakly coupled in 4-ε dimensions

⇒ compute all observables (e.g. operator dimensions) 

as power series in ε and set ε → 1 at the end

BUT: these series are divergent (starting from 2nd-3rd term) ⇒ Borel 

resummation etc needed
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Existing approaches to 3D Ising 

• skeleton expansion [Migdal; Parisi, Peliti...]

The only old approach which tries to use conformal symmetry

for O(N) model at large N

= + +...

Schwinger-Dyson equation for the vertex:

BUT: 1/N series converges very poorly even for N=3 
(even worse than ε -expansion) 
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Conformal bootstrap conditioning

1. Forget about Lagrangians - 
they are of little use for strongly coupled non-SUSY theories

2. Forget about AdS - 
CFTs that we want to solve are non-SUSY, small-N and do not 
have AdS duals.



/60

  

17

CFT - intrinsic definition
I. Basis of local operators Oi with scaling dimensions Δi

[including stress tensor Tμν of ΔT=4; conserved currents Jμ of ΔJ=3]   

derivative operators (descendants)

In unitary theories dimensions have lower bounds:

So each multiplet must contain the lowest-dimension operator:

(primary)

Kμ = special conformal transformation generator, [K]!-1
cf.
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At x≠ 0:

The generators act on the primary fields (not necessarily scalars) by

[Pµ,φ(x)] = −i∂µφ(x)

[D,φ(x)] = −i(∆ + xµ∂µ)φ(x) (A.2)

[Mµν ,φ(x)] = {Σµν − i(xµ∂ν − xν∂µ)}φ(x)

[Kµ,φ(x)] = (−i2xµ∆− 2xλΣλµ − i2xµx
ρ∂ρ + ix2∂µ)φ(x),

where the finite-dimensional matrices Σ act in the space of φ’s Lorentz indices; they have

to satisfy the commutation relation (notice the sign difference from the first equation in

(A.1))

[Σµν ,Σρσ] = +i(ηµρΣνσ ± perms) .

The algebra (A.1) corresponds to the mostly minus Minkowski signature. Beware that

the literature uses inconsistent sign conventions for various generators, in particular Mµν

and D (our conventions are those of [24]). Also, the generator action is usually given with

relative sign errors among various terms; this is not surprising because in practice these

expressions are actually rarely used. However, we will need them, so we re-checked from

scratch by using the original method of Mack and Salam [25].

As is well known, the algebra (A.1) is isomorphic to SO(d, 2). The isomorphism is

exhibited by identifying

Jµν = Mµν , Jd,d+1 = D

Jd,µ =
1

2
(Pµ −Kµ), Jd+1,µ =

1

2
(Pµ +Kµ) ,

and then Jαβ (α, β = 0 . . . d+ 1) satisfy the SO(d, 2) commutation relations

[Jαβ , Jγδ] = −i(ηαγJβδ ± perms) , ηαβ = diag(+,−, . . . ,−;−,+) .

B Unitarity bound for vectors

Metsaev [16] and Minwalla [17] have shown that in any number of spacetime dimensions d

a unitary primary vector must have dimension ∆ ≥ d−1. We will give here an independent

derivation of this result (see [26], [4] for similar arguments) based on the fact that conformal

invariance fixes the primary vector two-point function to have the (Euclidean) form:

〈Yµ(x)Yν(0)〉 =
1

(x2)∆

(

δµν − 2
xµxν

x2

)

.

17

Ward identities for correlation functions:

T µ
µ = β(g)O → 0 β(g) → 0

m
2
IR = m

2
UV +O

�
λ2

16π2

�

m
2
IR > 0 m

2
IR < 0

X · �. . .� = 0 X = (D,Pµ,Mµν , Kµ)

1

For 2- and 3-point functions suffice to solve the x-dependence:
normalization

2. “coupling constants”

= OPE coefficients
= structure constants of the operator algebra
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Notable operators of 3D Ising CFT

puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

 This CFT has an unbroken Z2 global symmetry [on the Lattice s→ -s]
All operators are Z2-odd (e.g spin field) or Z2-even (e.g. stress tensor) 

- all are primaries of 3D conformal group 

N.B. Primaries of D>=3 conformal group are morally similar to 
quasiprimaries of SL(2,C) in 2D (as opposed to Virasoro primaries)
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σ = Spin field (lowest dimension Z2-odd scalar)

puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

[morally like φ with an anomalous dimension]

- We are in 3D, so [φfree]=0.5, so the anomalous dimension ~0.02 is tiny. 
- Anomalous dim. >0 because of the unitarity bounds
- In ε-expansion it equals ε2/108+O(ε3)  
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puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

ε = “Energy density” field (lowest dimension Z2-even scalar)

-like φ2 but anomalous dimension ~0.4 nonnegligible
-ε/3+O(ε2) in the ε-expansion   

(not to be confused with energy-momentum tensor)
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Conformal perturbation theory 

3D Ising CFT

free scalar

These flows can be described by:

Since correlation length 

T

From the UV perspective:
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ε’ = next-to-lowest Z2-even scalar 

puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

[~φ4; relevant in free theory, becomes irrelevant in 3D Ising CFT]

gives corrections to scaling
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puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

3D Ising CFT describes also liquid-vapor critical point:

emergent Z2 symmetry

To get to this point one has to finetune 2 parameters: P, T =
the total number of relevant scalars (one Z2-even and one Z2-odd)
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Stress tensor

puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3is the continuum description of introducing spin coupling anisotropy:
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Spin 4 symmetric traceless (not conserved!)

puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

Ising
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Figure 7: Upper bound on the dimension of the second spin 2 operator T �
µν from the crossing

symmetry constraint (5.3). The algorithm from Appendix D was used with nmax = 10. The
3D Ising vertical red line is five times wider than the error band in Table 1. We do not show
the region of ∆σ close to the unitarity bound, which is subject to numerical instabilities.

which has dimension 6. To be more precise, in the free scalar theory this operator is

decoupled from the φ×φ OPE, but we expect it to couple in the Wilson-Fischer fixed point

in 4− � dimensions.

In the 2D Ising model the first such quasiprimary operator is

T �
= (L−4 − 5

3L
2
−2)L̄−21 (2D) , (5.6)

again of dimension 6. Notice that another 2D candidate spin 2 quasiprimary, (L−2− 3
4L

2
−1)ε

of dimension 3, is a null state since the field ε = φ2,1 is degenerate on level 2 in the 2D Ising

model.

Assuming as usual that the 2D Ising and the 4D free scalar are continuously connected

by the line of Wilson-Fischer fixed points to which the 3D Ising model also belongs, we

expect by interpolation that ∆T � ≈ 6 in 3D, not far from the upper end of the range allowed

by the rigorous bound (5.4).

5.4 Bounds on Higher Spin Primaries

In addition to bounding operators in the scalar and spin 2 sectors, we can also attempt to

place bounds on higher spin primaries in the σ× σ OPE. The first such operator in the 3D

Ising model is the spin 4 operator Cµνκλ. This operator is interesting because it controls

the leading effects of rotational symmetry breaking when the 3D Ising model is placed on a

cubic lattice. The corresponding perturbation of the CFT Lagrangian can be written as

δLCFT ∝ C1111 + C2222 + C3333 . (5.7)

Because of this connection with phenomenology, the dimension of C has been computed

rather precisely: ∆C � 5.0208(12) ([47], Eq. (4.9)).

16

describes effects of rotational symmetry breaking on cubic lattice:
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Cf. rigorous CFT theorems.1

puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

• Unitarity bounds [Ferrara, Gatto, Grillo‘74][Mack’77]

(by which we mean the difference between the operator dimension and the dimension of
the lowest 3D free scalar theory operator with the same quantum numbers). This is not
accidental, but is related to reflection positivity, which is the Euclidean space version of
unitarity. Primaries in reflection positive (or unitary) CFTs are known to have non-negative
anomalous dimensions [11, 38–41]:

∆ ≥ D/2− 1 (l = 0) , ∆ ≥ l +D − 2 (l ≥ 1) . (2.1)

The 3D Ising model is reflection positive on the lattice [42], and this property is inherited
in the continuum limit, so that the ‘unitarity bounds’ (2.1) are respected.

Can conformal symmetry be used to determine the local operator dimensions rather
than to interpret the results obtained via other techniques? In 2D this was done long ago
[4] using the Virasoro algebra. This also justified post factum the assumption of conformal
invariance, since the critical exponents and other quantities agreed with the exact lattice
solution. The Virasoro algebra does not extend to 3D, but in the next section we will
describe a method which is applicable for any D.

3 Conformal Bootstrap

Primary operators in a CFT form an algebra under the Operator Product Expansion (OPE).
This means that the product of two primary operators at nearby points can be replaced
inside a correlation function by a series in other local operators times coordinate-dependent
coefficient functions. Schematically, the OPE of two primaries has the form:

φi(x1)φj(x2) =
�

k

fijk C(x1 − x2, ∂2)φk(x2). (3.1)

The differential operators C are fixed by conformal invariance, and only primary operators
need to be included in the sum on the RHS. Here we are suppressing indices for clarity. In
general, scalar operators as well as operators of nonzero spin will appear on the RHS. Fairly
explicit expressions for the C’s have been known since the 70’s, at least in the case when
the φi,j are scalars and φk is a traceless symmetric tensor of arbitrary rank [6, 13], but we
will not need them here.

The numerical coefficients fijk are called structure constants, or OPE coefficients. These
numbers, along with the dimensions and spins of all primary fields, comprise the ‘CFT data’
characterizing the algebra of local operators.

The conformal bootstrap condition [8, 12, 4], shown schematically in Fig. 1, says that
the operator algebra must be associative. In that figure we consider the correlator of four
primaries

�φ1(x1)φ2(x2)φ3(x3)φ4(x4)� (3.2)

and use the OPE in the (12)(34) or (14)(23)-channel to reduce it to a sum of two-point
functions. The answer should be the same, which gives a quadratic condition on the

5

• CFT “Coleman-Mandula” theorem [Maldacena,Zhiboedov‘2011]

No conserved higher spin currents
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puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

Cf. rigorous CFT theorems.2

2 4 6 8

}
for l → ∞  

Sequence of anomalous dimensions of leading currents in σ x σ OPE  

(a) is increasing & upward convex [Nachtmann‘1973]

(b) tends to                           for l → ∞ 
[Callan, Gross‘1973]
[Alday,Maldacena 2007]
[Fitzpatrick,Kaplan,Poland,Simmons-Duffin’12]
[Komargodski,Zhiboedov‘12]
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Operator Product Expansion

coefficients are fixed by conformal symmetry;
can be determined by plugging OPE into 3-point 
function and matching on the exact expression:

Demanding that the two expressions agree, the coefficient function P can be fixed unam-
biguously. Here are the first few terms in the expansion:

P (x, ∂y) = |x|∆−2∆φ

�
1 +

1

2
xµ∂µ + αxµxν∂µ∂ν + βx2∂2 + . . .

�
, (1.7)

α =
∆+ 2

8(∆+ 1)
, β = − ∆

16(∆−D/2 + 1)(∆+ 1)
.

For the OPE of two identical scalars considered here the coefficients depend on ∆ ≡ ∆O

but not on ∆φ; in general they would also depend on ∆φ1 − ∆φ2 . Such expansions have
been worked out to all orders (and also for O of nonzero spin) in the 1970’s [1–3] and show
interesting structure visible already in (1.7). For example, the D dependence appears only
in the terms multiplied by x2, and would therefore be subleading on the light cone. Notice
also that the D-dependent term becomes singular when ∆O hits the scalar field unitarity
bound D/2− 1. This is not a problem since such an O is necessarily free and so fφφO = 0.

Once the OPE structure is determined, we can use it to express any n-point function as
a sum of (n− 1)-functions. Schematically:

�φ(x)φ(y)
�

ψi(zi)� =
�

O

fφφOP (x− y, ∂y)�O(y)
�

ψi(zi)� . (1.8)

For n = 3 there is a single exchanged primary O = ψ1, and we go back to Eq. (1.5), but
for n � 4 the sum will be infinite. Actually, it will be doubly infinite since P ’s are infinite
series in ∂y.

And here comes the third special property of the conformal OPE: it converges. By this
we mean that the representations (1.8) are actually absolutely convergent at finite separation
x− y, rather than being just asymptotic expansions in the limit x → y.

This property has two important applications:

• Correlation functions of arbitrarily high order can be computed by applying the OPE
recursively. Of course, to do this we must know all primary operator dimensions ∆i

and all OPE coefficients fijk (collectively known as the CFT data).

• Eq. (1.8) can also be used to constrain the CFT data itself, by means of an old
idea known as the conformal bootstrap [4–6]. The point is that a conformal four
point function can be computed using the OPE in three different channels: (12)(34),
(13)(24), and (14)(23). That the results agree is a constraint on the CFT data.

To explain how this works in the simplest setting, consider the correlator of four identical
scalars

�φ(x1)φ(x2)φ(x3)φ(x4)� =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(xij ≡ xi − xj) , (1.9)

constrained by the conformal symmetry to have this form with g(u, v) a function of the
cross ratios

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

. (1.10)

4

E.g. for
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OPE structure of 3D Ising

even spins only
(next slide)

all spins

odd x odd = even
odd x even = odd

even x even = even
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Bose symmetry in CFT

OPE of two identical scalars contains only even spin primaries

Consider three point function <scalar-scalar-spin l> 

a) Since should be invariant under x→ -x, so vanishes for odd spin
b) By conformal invariance vanishes at any other three points ⇒ 

OPE coefficient vanishes

2) By a similar argument antisymmetric tensor fields cannot occur in 
the OPE of two scalars, identical or not]

Remarks
1) Notice that odd spin descendants of course do occur in the OPE)
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Part 2.
Conformal Bootstrap. Theory
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Intrinsic definition of CFT - recap
Any CFT is characterized by CFT data

• spectrum of primary operator dimensions and spins

• OPE coefficients 

fixed by conformal symmetry

Using OPE, any n-point function can be computed reducing 
to (n-1)-point functions: 

Figure 4.1: Reducing 5point function to a sum of 4-point functions using the OPE.

4.2 Consistency condition on CFT data

As we mentioned, given a CFT data, we can compute all the correlators in a theory. It is

therefore natural to ask if any random set of CFT data defines a good theory. The answer

is no. At the very least, we have to impose a consistency condition on the CFT data, which

comes from studying the four-point functions. Consider a scalar four point function in a

generic point configuration:

To compute it via the OPE, we surround two of the operators, say φ1 and φ2 by a sphere

and expand into radial quantization states on this sphere. Operationally this means that

we are writing:

φ1(x1)φ2(x2) =

�

O

λ12OCO(x12, ∂y)O(y)
���
y=

x1+x2
2

,

φ3(x3)φ4(x4) =

�

O

λ34OCO(x34, ∂z)O(z)
���
z=

x3+x4
2

.
(4.2.1)

Plugging the above into the four-point function, we get

�φ1(x1)φ2(x2)φ3(x3)φ4(x4)� =
�

O

λ12Oλ34O

�
CO(x12, ∂y)CO(x34, ∂z)�O(y)O(z)�

�
, (4.2.2)

The functiosn in square brackets are completely fixed by conformal symmetry in terms of

the dimensions of φi and of the dimension and spin of O (since both the functions CO and

the correlator �O(y)O(z)� are fixed). These functions are called Conformal Partial Waves

(CPW). Diagramatically the expansion into conformal partial waves can be written as:

(although one should not confuse CPWs with Feynman diagrams).

Now, notice that we might have chosen to compute the same four point function by

choosing a sphere enclosing the operators φ1 and φ4. This means that we would have

chosen a different OPE channel, (14)(23) instead of (12)(34). We would have obtained a

53

And eventually to 2-pt functions which are known:



/60

  

34

For 3-point functions we get: 

independently of which pair of operators is replaced by OPE
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For 4-point functions we get:

conformal partial wave{ {
1

2 3

4

However we can also apply OPE in another channel:
1

2 3

4
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The case of four identical scalars
Ward identity constrains 4-point function to have the form:

Demanding that the two expressions agree, the coefficient function P can be fixed unam-
biguously. Here are the first few terms in the expansion:

P (x, ∂y) = |x|∆−2∆φ

�
1 +

1

2
xµ∂µ + αxµxν∂µ∂ν + βx2∂2 + . . .

�
, (1.7)

α =
∆+ 2

8(∆+ 1)
, β = − ∆

16(∆−D/2 + 1)(∆+ 1)
.

For the OPE of two identical scalars considered here the coefficients depend on ∆ ≡ ∆O

but not on ∆φ; in general they would also depend on ∆φ1 − ∆φ2 . Such expansions have
been worked out to all orders (and also for O of nonzero spin) in the 1970’s [1–3] and show
interesting structure visible already in (1.7). For example, the D dependence appears only
in the terms multiplied by x2, and would therefore be subleading on the light cone. Notice
also that the D-dependent term becomes singular when ∆O hits the scalar field unitarity
bound D/2− 1. This is not a problem since such an O is necessarily free and so fφφO = 0.

Once the OPE structure is determined, we can use it to express any n-point function as
a sum of (n− 1)-functions. Schematically:

�φ(x)φ(y)
�

ψi(zi)� =
�

O

fφφOP (x− y, ∂y)�O(y)
�

ψi(zi)� . (1.8)

For n = 3 there is a single exchanged primary O = ψ1, and we go back to Eq. (1.5), but
for n � 4 the sum will be infinite. Actually, it will be doubly infinite since P ’s are infinite
series in ∂y.

And here comes the third special property of the conformal OPE: it converges. By this
we mean that the representations (1.8) are actually absolutely convergent at finite separation
x− y, rather than being just asymptotic expansions in the limit x → y.

This property has two important applications:

• Correlation functions of arbitrarily high order can be computed by applying the OPE
recursively. Of course, to do this we must know all primary operator dimensions ∆i

and all OPE coefficients fijk (collectively known as the CFT data).

• Eq. (1.8) can also be used to constrain the CFT data itself, by means of an old
idea known as the conformal bootstrap [4–6]. The point is that a conformal four
point function can be computed using the OPE in three different channels: (12)(34),
(13)(24), and (14)(23). That the results agree is a constraint on the CFT data.

To explain how this works in the simplest setting, consider the correlator of four identical
scalars

�φ(x1)φ(x2)φ(x3)φ(x4)� =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(xij ≡ xi − xj) , (1.9)

constrained by the conformal symmetry to have this form with g(u, v) a function of the
cross ratios

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

. (1.10)

4

Using OPE can say more:

=

conformal blocks

contribution of the unit operator
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Crossing symmetry

This is a consistency condition for the CFT data

Nontrivial because not satisfied term by term in the expansion

Demanding that the two expressions agree, the coefficient function P can be fixed unam-
biguously. Here are the first few terms in the expansion:

P (x, ∂y) = |x|∆−2∆φ

�
1 +

1

2
xµ∂µ + αxµxν∂µ∂ν + βx2∂2 + . . .

�
, (1.7)

α =
∆+ 2

8(∆+ 1)
, β = − ∆

16(∆−D/2 + 1)(∆+ 1)
.

For the OPE of two identical scalars considered here the coefficients depend on ∆ ≡ ∆O

but not on ∆φ; in general they would also depend on ∆φ1 − ∆φ2 . Such expansions have
been worked out to all orders (and also for O of nonzero spin) in the 1970’s [1–3] and show
interesting structure visible already in (1.7). For example, the D dependence appears only
in the terms multiplied by x2, and would therefore be subleading on the light cone. Notice
also that the D-dependent term becomes singular when ∆O hits the scalar field unitarity
bound D/2− 1. This is not a problem since such an O is necessarily free and so fφφO = 0.

Once the OPE structure is determined, we can use it to express any n-point function as
a sum of (n− 1)-functions. Schematically:

�φ(x)φ(y)
�

ψi(zi)� =
�

O

fφφOP (x− y, ∂y)�O(y)
�

ψi(zi)� . (1.8)

For n = 3 there is a single exchanged primary O = ψ1, and we go back to Eq. (1.5), but
for n � 4 the sum will be infinite. Actually, it will be doubly infinite since P ’s are infinite
series in ∂y.

And here comes the third special property of the conformal OPE: it converges. By this
we mean that the representations (1.8) are actually absolutely convergent at finite separation
x− y, rather than being just asymptotic expansions in the limit x → y.

This property has two important applications:

• Correlation functions of arbitrarily high order can be computed by applying the OPE
recursively. Of course, to do this we must know all primary operator dimensions ∆i

and all OPE coefficients fijk (collectively known as the CFT data).

• Eq. (1.8) can also be used to constrain the CFT data itself, by means of an old
idea known as the conformal bootstrap [4–6]. The point is that a conformal four
point function can be computed using the OPE in three different channels: (12)(34),
(13)(24), and (14)(23). That the results agree is a constraint on the CFT data.

To explain how this works in the simplest setting, consider the correlator of four identical
scalars

�φ(x1)φ(x2)φ(x3)φ(x4)� =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(xij ≡ xi − xj) , (1.9)

constrained by the conformal symmetry to have this form with g(u, v) a function of the
cross ratios

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

. (1.10)

4

So:
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structure constants of the schematic form

�

k

f12kf34k(. . .) =
�

k

f14kf23k(. . .) . (3.3)

The (. . .) factors are functions of coordinates xi, called conformal partial waves. They are

produced by acting on the two-point function of the exchanged primary field φk with the

differential operators C appearing in the OPE of two external primaries. Thus, they are also

fixed by conformal invariance in terms of the dimensions and spins of the involved fields.

f12k f34k

f14k

f23k

φk

φ1

φ2 φ3

φ4

�

k

= φk

φ1

φ2 φ3

φ4

�

k

Figure 1: The conformal bootstrap condition = associativity of the operator algebra.

The dream of the conformal bootstrap is that the condition (3.3), when imposed on four-

point functions of sufficiently many (all?) primary fields, should allow one to determine the

CFT data and thus solve the CFT. Of course, there are presumably many different CFTs,
and so one can expect some (discrete?) set of solutions. One of the criteria which will help

us to select the solution representing the 3D Ising model is the global symmetry group,

which must be Z2.

Our method of dealing with the conformal bootstrap will require explicit knowledge of

the conformal partial waves. In the next section we will gather the needed results.

4 Conformal Blocks

In this paper we will be imposing the bootstrap condition only on four-point functions of

scalars. Conformal partial waves for such correlators were introduced in [7] and further

studied in [9, 10]; they were also discussed in [12]. Recently, new deep results about them

were obtained in [13–15]. Significant progress in understanding non-scalar conformal partial

waves was made recently in [43] (building on [44]), which also contains a concise introduction

to the concept. Below we’ll normalize the scalar conformal partial waves as in [15]; see

Appendix A for further details on our conventions.

Consider a correlation function of four scalar primaries φi of dimension ∆i, which is fixed

by conformal invariance to have the form [3]

�φ1(x1)φ2(x2)φ3(x3)φ4(x4)� =
�
x2
24

x2
14

� 1
2∆12

�
x2
14

x2
13

� 1
2∆34 g(u, v)

(x2
12)

1
2 (∆1+∆2)(x2

34)
1
2 (∆3+∆4)

, (4.1)

6

•The agreement is not automatic ⇒ constraint on CFT data

Crossing symmetry/OPE associativity/conformal bootstrap

• (Almost) definition of what CFT is  

• Should have isolated solutions of finite-dim. families 
corresponding to actual CFTs

[Ferrara,Gatto,Grillo 1973] 
[Polyakov’74] [Mack’77]

• Many applications in D=2 [Belavin-Polyakov-Zamolodchikov’83]...

• Until recently thought useless/intractable in D>=3
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5- and higher point functions don’t give new 
constraints  

39
Figure 4.2: For five-point functions, OPE in (12) and (15) channels should give equivalent

expansions. This figure demonstrates schematically that this is not an additional constraint

but follows from OPE associativity for four point functions.

definition.

But for now, can we use this definition to classify CFTs, in analogy with Lie algebras?
(Very ambitious goal!)

More modestly, is it possible to deduce some general properties, beyond those we already
discussed, which are valid for any CFT?

Can we try and learn new things about CFTs which we know exist but which are not
exactly solvable? An example of such a theory is the three-dimensional Ising model at
T = Tcrit.

This research direction is called “Conformal Bootstrap”.

55
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D=2 success story

- In D=2  (Pμ ,Kμ ,Mμν ,D)→ Virasoro algebra
⇒ New lowering operators L-n,  n=2,3,...

Virasoro multiplet =            (Conformal multiplets)

- Central charge c<1 + unitarity ⇒ 

[Friedan,Qiu, Shenker]

- Primary dimensions in these “minimal models” are also fixed:

0.0 0.1 0.2 0.3 0.4
d0.0

0.5

1.0

1.5

2.0
f2
�2�D��d�

Ising

Ψ,Ψ2 �m�3�

Φ,Φ2 �m�3�
Free

Figure 15: The solid (blue) line represents the simplest upper bound, in an arbitrary

2D CFT, on the dimension ∆min of the first scalar in the OPE O ×O of a dimension

d scalar with itself. The dots show the position of the minimal model OPEs φ×φ and

ψ×ψ (see the text) in this plane. The dashed line corresponds to the free theory OPE

(6.14). The bound is respected in all cases.

The basic OPE of Vα with itself has the form:

Vα × Vα = V2α .

Thus we have d = α2, ∆ = 4α2, which gives the dashed line in Fig. 15,25 below the bound.

A more interesting example involves the minimal model family of exactly solvable 2D CFT.

The unitary minimal models (see [15],[34]) are numbered by an integer m = 3, 4, . . ., and describe

the universality class of the multicritical Ginzburg-Landau model:

L ∼ (∂φ)
2
+ λφ2m−2

. (6.15)

For m = 3, the Ising model is in the same universality class. The central charge of the model,

c = 1− 6

m(m− 1)
,

monotonically approaches the free scalar value cfree = 1 as m→∞. Intuitively, as m increases, the

potential becomes more and more flat, allows more states near the origin (c grows), and disappears

as m→∞ (free theory).

Minimal models are called so because they have finitely many Virasoro primary fields (the

number of SL(2, C) primaries is infinite). All Virasoro primaries are scalar fields Or,s numbered

by two integers 1 ≤ s ≤ r ≤ m− 1, whose dimension is

∆r,s =
(r + m(r − s))2 − 1

2m(m + 1)
. (6.16)

25Strictly speaking the bound in Fig. 15 was derived for real fields. However, we can apply it to the real parts
which satisfy the OPE Re Vα × Re Vα ∼ 1 + Re V2α.
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[Belavin, Polyakov, Zamolodchikov], ...

-Finally, knowing dimensions, OPE coefficients can be determined 
by bootstrap
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Difficulties in D>=3 

- # of primaries is always infinite

- their dimensions are also unknowns to be computed
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⇒ # of all states (primaries+descendants) should grow exponentially:

Asymptotics for the # of primaries (Cardy’s formula in D dim’s)

- Put the CFT to the sphere SD-1of radius R x (time) 
- via radial quantization, states on the sphere are in one-to-one 
correspondence with local operators in flat space

Now consider partition function:

In the high T limit T >> R-1 expect:

same is valid for the # of primaries     (quasiprimaries if D=2)
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Conf. block decomposition translated in radial quantization
(useful for convergence)

First translate OPE:

{
sum over descendants of O
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=

!

Does this series converge?
It represents the 4-pt functions, so it better do...

But how fast?

Also, this series is not positive-definite; does it converge absolutely?
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Cauchy inequality argument

φ1
φ2

φ3 φ4

φ1φ2
φ3 φ4

φ1
φ2

φ3 φ4

×≤

not reflection-positive
reflection positive
(norms of states)

Same inequality is valid for tails in OPE series
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!

Convergence for reflection-positive 4-pt functions

This series converges exponentially fast:

Rough proof: the only way this could not happen is if the 
coefficients cn2 grow exponentially with energy. But since in the 

small τ limit the correlator grows at most as a power of τ,
cn2=O(E^some power) 

In this last step it’s important that cn2≥ 0 and cancellations are impossible 
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Various geometries
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Democratic geometry 

[Pappadopulo, S.R., Espin, Rattazzi‘2012]

conf.trans.

Weyl trans.

Convergence of the OPE (1.8) now follows from a basic theorem about Hilbert spaces:
the scalar product of two states converges when one of the two states is expanded into an
orthonormal basis. Q.E.D.

The above argument will provide a starting point for our discussion. Our goal will be to
make it more explicit and quantitative, in particular by determining the rate of convergence.

3 Operator formalism exemplified

The purpose of this section is to provide some background material about the radial quanti-
zation and the state-operator correspondence. This is pretty standard and may be skipped
by the experts.

3.1 Map to the cylinder

One way to think about the radial quantization is by mapping the CFT from the Euclidean
flat D-dimensional space to the cylinder R × SD−1 (Fig. 3). In the 2D case this is usually
carried out by means of the logarithmic coordinate transformation. However, the map exists
in any D because the cylinder is conformally flat:

ds2cyl = dτ 2 + dn2 = r−2(dr2 + r2dn2) ≡ r−2ds2RD (τ = log r ,n2 = 1) . (3.1)

On the cylinder we have time translation invariance and the usual Hamiltonian quantization.

y

x

z1

z2

z3

Figure 3: The map between RD and the cylinder.

Going back to the flat space the cylinder time slicing is mapped onto the slicing by spheres,
and we recover the radial quantization.

It is a basic property of CFT that correlation functions on conformally flat backgrounds

8

(near)-square configuration 

small parameter!
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Part 3
Conformal Bootstrap.
Concrete applications
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Bootstrap applications for 3D Ising
Focus on 4-pt function of the spin field

where xij ≡ xi − xj, ∆ij ≡ ∆i −∆j, and g(u, v) is a function of the conformally invariant

cross-ratios

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

. (4.2)

The conformal partial wave expansion in the (12)(34) channel gives a series representation

for this function:

g(u, v) =
�

O

f12Of34O G∆,l(u, v) , (4.3)

where the sum is over the exchanged primariesO of dimension∆ and spin l and the functions

G∆,l(u, v) are called conformal blocks. We must learn to compute them efficiently.

In even dimensions, conformal blocks have relatively simple closed-form expressions in

terms of hypergeometric functions [10, 13–15]. For example, the 2D and 4D blocks are given

by:

GD=2
∆,l (u, v) =

1

2
[k∆+l(z)k∆−l(z̄) + (z ↔ z̄)] ,

GD=4
∆,l (u, v) =

1

l + 1

zz̄

z − z̄
[k∆+l(z)k∆−l−2(z̄)− (z ↔ z̄)] , (4.4)

where

kβ(x) ≡ xβ/2
2F1

�
1
2(β −∆12),

1
2(β +∆34); β; x

�
, (4.5)

and the complex variable z and its complex conjugate z̄ are related to u, v via

u = zz̄, v = (1− z)(1− z̄) . (4.6)

The meaning of the variable z is explained in Fig. 2. From the known analyticity properties

of 2F1, it follows that the conformal blocks are smooth single-valued functions in the z plane

minus the origin and the (1,+∞) cut along the real axis. This is not accidental and should

be valid for any D. By standard radial quantization reasoning (see [45], Sec. 2.9), the OPE

by which the conformal blocks are defined is expected to converge as long as there is a sphere

separating x1 and x2 from x3 and x4. This sphere degenerates into a plane and disappears

precisely when z crosses the cut.

We now pass to the results for general D, including the case D = 3 we are interested in,

which are rather more complicated. From now on we consider only conformal blocks of four

identical scalars, so that ∆12 = ∆34 = 0. In any dimension, such blocks depend only on

the dimension and spin of the exchanged primary. For scalar exchange (l = 0), conformal

blocks have a double power series representation ([13], Eq. (2.32)):

G∆,0(u, v) = u∆/2
∞�

m,n=0

[(∆/2)m(∆/2)m+n]
2

m!n!(∆+ 1− D
2 )m(∆)2m+n

um
(1− v)n, (4.7)

where (x)n is the Pochhammer symbol. In this paper we will only use this representation

at z = z̄, in order to derive the closed form expression (4.10) given below. In principle the

series converges absolutely in the region

|1− v| <

�
1, 0 ≤ u < 1 ,

2
√
u− u, u ≥ 1 ,

(4.8)

7

{ {
Applying OPE get:

conformal blocks

a priori, all fields above unitarity 
bounds are allowed

Crossing symmetry constraint:
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Allowed vs realized spectrum in σ x σ OPE (D=3)

from Unitarity bounds:

ε Tμν 

Cμνλρ    
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Theory of conformal blocks in D≥3
•  “simple” in even dims [Dolan,Osborn,2001]

•  Complicated in odd dims

D=4:

D=3:

where xij ≡ xi − xj, ∆ij ≡ ∆i −∆j, and g(u, v) is a function of the conformally invariant

cross-ratios

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

. (4.2)

The conformal partial wave expansion in the (12)(34) channel gives a series representation

for this function:

g(u, v) =
�

O

f12Of34O G∆,l(u, v) , (4.3)

where the sum is over the exchanged primariesO of dimension∆ and spin l and the functions

G∆,l(u, v) are called conformal blocks. We must learn to compute them efficiently.

In even dimensions, conformal blocks have relatively simple closed-form expressions in

terms of hypergeometric functions [10, 13–15]. For example, the 2D and 4D blocks are given

by:

GD=2
∆,l (u, v) =

1

2
[k∆+l(z)k∆−l(z̄) + (z ↔ z̄)] ,

GD=4
∆,l (u, v) =

1

l + 1

zz̄

z − z̄
[k∆+l(z)k∆−l−2(z̄)− (z ↔ z̄)] , (4.4)

where

kβ(x) ≡ xβ/2
2F1

�
1
2(β −∆12),

1
2(β +∆34); β; x

�
, (4.5)

and the complex variable z and its complex conjugate z̄ are related to u, v via

u = zz̄, v = (1− z)(1− z̄) . (4.6)

The meaning of the variable z is explained in Fig. 2. From the known analyticity properties

of 2F1, it follows that the conformal blocks are smooth single-valued functions in the z plane

minus the origin and the (1,+∞) cut along the real axis. This is not accidental and should

be valid for any D. By standard radial quantization reasoning (see [45], Sec. 2.9), the OPE

by which the conformal blocks are defined is expected to converge as long as there is a sphere

separating x1 and x2 from x3 and x4. This sphere degenerates into a plane and disappears

precisely when z crosses the cut.

We now pass to the results for general D, including the case D = 3 we are interested in,

which are rather more complicated. From now on we consider only conformal blocks of four

identical scalars, so that ∆12 = ∆34 = 0. In any dimension, such blocks depend only on

the dimension and spin of the exchanged primary. For scalar exchange (l = 0), conformal

blocks have a double power series representation ([13], Eq. (2.32)):

G∆,0(u, v) = u∆/2
∞�

m,n=0

[(∆/2)m(∆/2)m+n]
2

m!n!(∆+ 1− D
2 )m(∆)2m+n

um
(1− v)n, (4.7)

where (x)n is the Pochhammer symbol. In this paper we will only use this representation

at z = z̄, in order to derive the closed form expression (4.10) given below. In principle the

series converges absolutely in the region

|1− v| <

�
1, 0 ≤ u < 1 ,

2
√
u− u, u ≥ 1 ,

(4.8)

7

+ recursions for higher spins

D=3 is as complicated as arbitrary D
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Theory of conformal blocks in D≥3

• Casimir differential equation [Dolan,Osborn,2003]

•  Approximate expressions

2nd order part.diff.op. coming from the quadratic Casimir

[Hogervorst,S.R.,to appear]


