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Part |
Conformal symmetry
(Physical foundations & Basics,
Ising model as an example)
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The subject of these lectures is:

The simplest

- experimentally relevant
- unsolved

Conformal Field Theory is 3D Ising Model @ T=Tc

It's also an ideal playground to explain the technique of
conformal bootstrap...
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Basics on the Ising Model

cubic lattice
1 |

4 = exp[?— Z sisj] -

(25) |
S; — x|
— Paradigmatic model of ferromagnetism
M- spont; magnetization

Tc T

Critical temperature (Curie point) 41760



Correlation length

Critical point can also be detected by looking at the spin-spin correlations

ForT>Tc:  (s(0)s(r)) ~ e'r/ﬁ(Tj7 correlation length

ET) 500 (T—T,)

AT=Te ((0)s(r) ~ o

Critical theory is scale invariant:  (5(0)s(Ar)) = )\_2A(S(O)s(r)>

It is also conformally invariant [conjectured by Polyakov’'71]
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2D Ising Model

* free energy solved by Onsager’44 on the lattice and for any T

e Polyakov noticed that (o(x1)o(z2)e(x3)) is conf.inv.at T=Tc

* [n 1983 Belavin-Polyakov-Zamolodchikov identified the critical
2D Ising model with the first unitary minimal model
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3D Ising Model

e Lattice model at generic T is probably not solvable
[many people tried]

e Critical theory (T=Tc) in the continuum limit might be solvable

[few people tried,
conformal invariance poorly used]
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Existing approaches to 3D Ising

e Lattice Monte-Carlo

e High-T expansion on the lattice [~strong coupling expansion]

Expand exponential in Z = exp

Converges for T>>Tc , extrapo

e
72 %)

(i)

ate for T— Tc by Pade etc
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Existing approaches to 3D Ising

e RG methods

m A
3D Ising CFT
free scalar \\, >
perturbed by A

m2¢2 L )\¢4
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Physical Origins of CFT

RG Flows:

CFTuy / CFTr

Fixed points = CFT

[Rough argument: T[L‘ = 5(9)(9 — 0 when £(g) — 0]
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“Free to 3D Ising CFT” flow in more detail

CFTuv = free scalar  (O¢)?

Z>-preserving perturbation: m2¢2 4 )\454 [—|—f<;gb6] m, A < Ayy

2 2 \°
IR physics phase diagram:

strong coupling
msp < 0 / msp > 0

- >

2
\ CFT myy

Z; spont. broken

massive theories in IR
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Universality

- Any same-symmetry Lagrangian (e.g. ® coupling #0) can flow to the same
CFTRr

- In particular can even start from a lattice model like 3D Ising model
or any modification (e.g. add next-to-nearest coupling)

Near T, the spin-spin correlation length §(T)— oo
= lattice artifacts go away

Continuum limit @ T=T. is the same CFTr as on the previous slide
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Existing approaches to 3D Ising

e RG methods mi 4
3D Ising CFT
free scalar \\ >
perturbed by A
m2¢2 £ )\¢4

Parisi... try to describe this fixed point by using renormalizable Lagrangian
[?? since nonperturbative] + Borel resummation tricks

Wilson,Wegner... use Exact Renormalization Group [flow in the space of
non-renormalizable Lagrangians]
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Existing approaches to 3D Ising

* ¢ - expansion [Wilson, Fischer]

Fixed point becomes weakly coupled in 4-€ dimensions

= compute all observables (e.g. operator c

imensions)

as power series in € and set € = | att

ne end

BUT: these series are divergent (starting from 2nd-3rd term) = Borel

resummation etc needed
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Existing approaches to 3D Ising

* skeleton expansion [Migdal; Parisi, Peliti.] for O(N) model at large N

The only old approach which tries to use conformal symmetry

sie: Al =1/2+001/N)  Ald=2+0(1/N)
o€ = |£19]2R7 A {313 Ae|zgs|Ae f=00/N)

Schwinger-Dyson equation for the vertex:

BUT: I/N series converges very poorly even for N=3
(even worse than € -expansion)
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Conformal bootstrap conditioning

|. Forget about Lagrangians -
they are of little use for strongly coupled non-SUSY theories

2. Forget about AdS -

CFTs that we want to solve are non-SUSY, small-N and do not
have AdS duals.
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CFT - intrinsic definition
l. Basis of local operators O; with scaling dimensions A,

[including stress tensor Ty of AT1=4; conserved currents |, of A=3]

O = Oat1 = Opta =
A A+l A+2 7 derivative operators (descendants)

Ky = special conformal transformation generator, |K [=-1
K, < 2z,(z-0)—2°0, cf P, <+ 0,
K

K K
OA<—OA+1<—OA+2<—...

In unitary theories dimensions have lower bounds:

A>{¢+D-2(>D/2—1for £=0)

So each multiplet must contain the lowest-dimension operator:

(primary)
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Atx+ 0. [K,, ¢(z)] = (—i22,A — 220*%y, — 21,270, + ix°0,)p()
Ward identities for correlation functions:

X-(.)=0 X=(DP,M

Nz

K,.)

For 2- and 3-point functions suffice to solve the x-dependence:
- normalization

(0:@)05(0) = oo

(O’t(xl)oj(xQ)Ok(w3)> = B b A —n

{3 Ai—f—Ak—Aj |$23 |Aj +A—A;

212

2, “coupling constants”

= OPE coefficients
= structure constants of the operator algebra
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Notable operators of 3D Ising CFT

This CFT has an unbroken Z2 global symmetry [on the Lattice s— -s]
All operators are Z2-odd (e.g spin field) or Z2-even (e.g. stress tensor)

Operator | Spinl | Zs | A Exponent
o 0 — 1 0.5182(3) | A=1/2+n/2
o’ 0 — z 4.5 A =3+ wy
€ 0 + | 1.413(1) A=3—-1/v
g’ 0 + | 3.84(4) A=3+w
g 0 + | 4.67(11) A =3+ ws
T 2 + |3 n/a
Clivka 4 + | 5.0208(12) | A =3 + wnr

- all are primaries of 3D conformal group

N.B. Primaries of D>=3 conformal group are morally similar to

quasiprimaries of SL(2,C) in 2D (as opposed to Virasoro primaries)
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O = Spin field (lowest dimension Z2-odd scalar)

Operator | Spinl | Zs | A Exponent
C o 0 — 10.5182(3) | A=1/24+n/2] )

o’ 0 — Z 4.5 A =3 + W4

3 0 + | 1.413(1) A=3—-1/v

g’ 0 + | 3.84(4) A=3+w

o 0 + | 4.67(11) A =3+ wsy

T 2 + |3 n/a

Clivka 4 + | 5.0208(12) | A =3 + wnr

[morally like ¢p with an anomalous dimension]

-We are in 3D, so [(Pfree]=0.5, so the anomalous dimension ~0.02 is tiny.
- Anomalous dim. >0 because of the unitarity bounds

- In €-expansion it equals €%/108+0O(¢&3)
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€ = “Energy density” field (lowest dimension Z2-even scalar)

(not to be confused with energy-momentum tensor)

Operator | Spinl | Zo | A Exponent
o 0 — 10.5182(3) | A=1/2+n/2
o’ 0 — Z 4.5 A =3 + WAy

( € 0 + | 1.413(1) A=3—-1/v )
g' 0 + | 3.84(4) A=3+w
g 0 + | 4.67(11) A =3+ ws
T 2 + 13 n/a
C/JVK)\ 4 + 50208(12) A =3 + WNR

-like ¢p? but anomalous dimension ~0.4 nonnegligible
-£/3+0O(€?) in the g-expansion
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Conformal perturbation theory

\ These flows can be described by:

A‘// VLo = ::MS_AE /dw3e(:c)

free scalar




€ = next-to-lowest Z2-even scalar

Operator | Spinl | Zs | A Exponent
o 0 — 1 0.5182(3) | A=1/2+n7n/2
o’ 0 — ;3 4.5 A =3+ wy
3 0 + | 1.413(1) A=3—-1/v
( g’ 0 + | 3.84(4) AN=3+w )
o 0 + | 4.67(11) A =3+ wsy
T 2 + |3 n/a
Clivka 4 + | 5.0208(12) | A =3 + wnr

[~p* relevant in free theory, becomes irrelevant in 3D Ising CFT]

1

0L ~ T / P’z € () gives corrections to scaling

(0(0)o(x)) = ‘w‘;Aa (1 | (Iwﬁ\)w)
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3D Ising CFT describes also liquid-vapor critical point:

218

emergent Z2 symmetry

1
atm

0.006

/ ' 100 374

7 o1 T°C

To get to this point one has to finetune 2 parameters: BT =
the total number of relevant scalars (one Z2-even and one Z2-odd)

Operator | Spin [ | Zy | A Exponent

( o 0 | —105182(3) [A=1/2+n/2] )

o’ 0 — 1 =245 A =3+ wy
( e 0 | + |1.413(1) | A=3—1/v )

g’ 0 + | 3.84(4) A=34+w

g 0 + | 4.67(11) A =3+ wsy

T 2 + |3 n/a

C/W,{)\ 4 —+ 50208(12) A = 3 + WNR
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Stress tensor

Operator | Spin [ | Zs | A Exponent
o 0 — 10.5182(3) | A=1/2+n/2
o’ 0 — | 245 A=3+wy
€ 0 + | 1.413(1) A=3—-1/v
g’ 0 + | 3.84(4) A=3+w
o 0 + | 4.67(11) A =3+ wsy

( T 2 + | 3 n/a )
OMVI%)\ 4 + 50208(12) A =3 + WNR

5£CFT :a/cha:

is the continuum description of introducing spin coupling anisotropy:

25/60



Spin 4 symmetric traceless (not conserved!)

Operator | Spinl | Zs | A Exponent
o 0 — 10.5182(3) | A=1/2+n/2
! 0 — Z 4.5 A = 3 + W4
€ 0 + | 1.413(1) A=3—-1/v
g’ 0 + | 3.84(4) A=3+w
o 0 + | 4.67(11) A =3+ wsy
T 2 + |3 n/a
( O'LW,{)\ 4 + 50208(12) A =3 + WNR )

describes effects of rotational symmetry breaking on cubic lattice:

0Lcrpr X Cr111 + Ca999 + Cssss
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Cf. rigorous CFT theorems.l|

Operator | Spin [ | Zy | A Exponent
o 0 — 10.5182(3) | A=1/2+n/2
o’ 0 — | 245 A=3+wqy
€ 0 + | 1.413(1) A=3—-1/v
o 0 + | 3.84(4) A=3+w
g 0 + | 4.67(11) A =34 wy
T 2 + |3 n/a
C’LW,%)\ 4 —+ 50208(12) A = 3 + WNR

e Unitarity bounds [Ferrara, Gatto, Grillo‘74][Mack’77]

A>D/2—1 (1=0), A>1+D-2 (I>1)

e CFT “Coleman-Mandula” theorem [Maldacena,Zhiboedov201 1]

No conserved higher spin currents
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Cf. rigorous CFT theorems.?2

Operator | Spin [ | Zs Exponent
o 0 | - 0.5182(3) =1/2+1/2
o’ 0 — | 245 A =3+ wy
e 0 |+ |14131) |A=3-1/v
g’ 0 + | 3.84(4) A=3+w
" 0 | + |467(11) | A=3+w,
T, 2 + |3 n/a
( Civm 4 | 4+ |5.0208(12) | A =3+ wxr )

Sequence of anomalous dimensions of leading currents in 0 x 0 OPE
“Ye — AE,min — Ac:o'n,s.
(a) is increasing & upward convex [Nachtmann‘1973]

[Callan, Gross'1973]

(b) tends to Q(AJ _ Af'ree) for¢ = o ;Alday,M.aIdacena 2007] | |
[Fitzpatrick,Kaplan,Poland,Simmons-Duffin’ | 2]

'[Komargodski,Zhiboedov‘|2]
(" -

l """""" yoT I ---------- I’Yé -------------- }Q(Ao i Af'r'ee)
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Operator Product Expansion

O0;(x)0;(0) = Aiji|z|™ 272 {Or(0) + .. .}
%m“@uOk + az*z”0,0,0k + ,6$2820k + ...

coefficients are fixed by conformal symmetry;
can be determined by plugging OPE into 3-point
function and matching on the exact expression:

B Aijk
(Oi(xl)oj($2)0k($3)> . |£l:12 Ai+Aj—Ak‘x13 Ai+Ak—Aj|x23‘Aj+Ak—Ai

E.g.fOI" Az — AJ? Ak — A

A2 A
, b=
S(A+ 1)

o =
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OPE structure of 3D Ising

odd x odd = even
odd x even = odd
even X even = even

ocxo=1+(e+€+...)
’ |
-|-( by o ) even spins only
+(Cp,ws‘,)\+ ) (next slide)
+ ...
ocxXxe=oc+o +... all spins
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Bose symmetry in CFT

OPE of two identical scalars contains only even spin primaries

Consider three point function <scalar-scalar-spin |>

<¢(x)¢(_x)oﬂlauz,---ﬂl (O)> X Ly Lpy -« - Ly

a) Since should be invariant under x— -x, so vanishes for odd spin
b) By conformal invariance vanishes at any other three points =

OPE coefficient vanishes

Remarks
|) Notice that odd spin descendants of course do occur in the OPE)

2) By a similar argument antisymmetric tensor fields cannot occur in
the OPE of two scalars, identical or not]
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Part 2.
Conformal Bootstrap. Theory
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Intrinsic definition of CFT - recap
Any CFT is characterized by CFT data

e spectrum of primary operator dimensions and spins {A,L-, Ei}
* OPE coefficients f; .

0i(z)0;(y) = Z fijxC(x — y, 0y) Ok (y)

fixed by conformal symmetry

Using OPE, any n-point function can be computed reducing
to (n-1)-point functions:

(0 ) psont, )

And eventually to 2-pt functions which are known: (O;(z)0,(0)) = |5’3|;in
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For 3-point functions we get:

fijx
(0i(21)0;(22)Or(23)) = [ T10| At =Bk |g15|BitAk—A] | o |A;+Ak—A;

independently of which pair of operators is replaced by OPE
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For 4-point functions we get:

(01020304) = Z f12if34:C (212, 02)C (234, 04)(Oi(22)O;(x4))
N -~ i A v 2

| conformal partial wave
\ 4
; 7
2

>

However we can also apply OPE in another channel:

| 4
Z\’J/ Z f145 f234]. - ]

J ____,_——"'——-"“‘--._____ J
2 3

3
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The case of four identical scalars

Ward identity constrains 4-point function to have the form:

U. v 2 .2 2 .2
V%) N g

13T 73T
T T3y 13124
‘ 12

Using OPE can say more:

(z1) ¢(z3)
B(xs) plzs)/ ) Nogilzaz] 220 agy| 27224 ({O4(@2) + - HOi(x) + -+ })

GA " (u v) -— conformal blocks

-y
ulog 212|280 | 234|289

contribution of the unit operator 36/60



Crossing symmetry T1 4> T3

o g(u,v) g(v,u) Rl ik
(PPpp) = T12]28|254[28  |214|?D|z03[22 YTz T 2,

So:  g(v,u) = (v/u)?¢g(u,v)

This is a consistency condition for the CFT data

Nontrivial because not satisfied term by term in the expansion

gs(’u,, ’U) =1+ Z)@@’GA%& (u, v)
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Crossing symmetry/OPE associativity/conformal bootstrap

P1 P4 k
14
S f>¢_< _ I
k
¢2 ¢3 23k

*The agreement is not automatic = constraint on CFT data
[Ferrara,Gatto,Grillo 1973]
* (Almost) definition of what CFT is [Polyakov’74] [Mack’77]

e Should have isolated solutions of finite-dim. families
corresponding to actual CFTs

e Many applications in D=2 [Belavin-Polyakov-Zamolodchikov’83]...

e Until recently thought useless/intractable in D>=3
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5- and higher point functions don’t give new

constraints

Reducing the five-point function to
a sum of four-point functions

1 5\1 5
=3 >
9 4 9 i 4
3
1 5
—OOI OII

=

/o

(U

Use the four-point function
consistency condition

N

ot

- ; Oll
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D=2 success story

-In D=2 (P, ,Ky ,Myy ,D)— Virasoro algebra
= New lowering operators L.,, n=2,3,...

Virasoro multiplet = @, ; (Conformal multiplets)

- Central charge c<I + unitarity =

6

=] 0= B8 [Friedan,Qiu, Shenker]
m(m + 1)’ e

- Primary dimensions in these “minimal models” are also fixed:

(r+m(r—s))*—1
2m(m + 1)

A, s = I<s<r<m-—1

-Finally, knowing dimensions, OPE coefficients can be determined
by bootstrap

Belavin, Polyakov, Zamolodchikov], ...
[Belavin, Polyakov, Zamolodchikov] 40/60



Difficulties in D>=3

Z M2iA34iG (A, Aezt|u, v) = ZA147;>\23¢G(A3', Aeri |V 1)

- # of primaries is always infinite

- their dimensions are also unknowns to be computed
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Asymptotics for the # of primaries (Cardy’s formula in D dim’s)

:

]
SP—1 « time
N

~_

- Put the CFT to the sphere SP-'of radius R x (time)
- via radial quantization, states on the sphere are in one-to-one A
correspondence with local operators in flat space Esppere = B

Now consider partition function: Z = Z exp(—F/T)
In the high T limit T >> R-! expect:

L exp(—vol(SD_l)F(T)) F(T) — Const.TD_l
= # of all states (primariest+descendants) should grow exponentially:

#(A < E) ~ exp(Const.E1~1/P)

same is valid for the # of primaries (quasiprimaries if D=2) /0



Conf. block decomposition translated in radial quantization
(useful for convergence)

First translate OPE:

=) AoC(z,0)0(0)

#(0) < |Ag) = ¢(0)]0)

)| Ap) = ) Ao(Co(x)|A0) + Ci(z)| Ao + 1) +...)
\_\/-/

sum over descendants of O
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d(z1) H(z3)
(352) ¢ .’134) Z)\é¢z|x12|A —2A¢|$ |A 2A¢<{O (1132) -+ - }{O (51:4) }>

>

Qe
Qe

N
]

Qe
Qe

A

\/

(p3pad102) o » (0|p3daln)e T (n|p1¢2|0)
T

Ba=Ae+m p=0, 1,2,
p@p=) O

Does this series converge!?
It represents the 4-pt functions, so it better do...

Also, this series is not positive-definite; does it converge absolutely?

But how fast?
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Cauchy inequality argument

. » reflection positive
not reflection-positive (norms of states)

Same inequality is valid for tails in OPE series
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Convergence for reflection-positive 4-pt functions

A
__

(0|ppp|0) = Y (0]pg|n)eEr" (n|pg|0)
T En

N—g
\
>

< (0l¢ppg|0) = ) cpe ™™™ 2 >0

TL
This series converges exponentially fast:

2 —FH.,T —F.T
E C,€ <e
En 2> Ex

Rough proof: the only way this could not happen is if the
coefficients c,? grow exponentially with energy. But since in the
small T limit the correlator grows at most as a power of T,
cn?=0O(E*some power)

In this last step it’s important that c,2> 0 and cancellations are impossible
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Various geometries

Qe

Qe

Qe

pe

pe

pe

L
P N

L 4 ~
P .
~s ® A
R
’
1
[l
[
1
1
'
. ~~
‘. @) R
e Jmf ’

-
llllll

“.'
- o

»
lllll
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Democratic geometry A

(near)-square configuration

T e”” =3 —2V2~0.17
] small parameter!

\4 ¢'\_/¢°

3 [Pappadopulo, S.R., Espin, Rattazzi2012]
SD : X R 48/60



Part 3
Conformal Bootstrap.

Concrete applications
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Bootstrap applications for 3D Ising
Focus on 4-pt function of the spin field

(J(x1)0($2)0($3)0'(334)> — ‘$12|3A(f";34‘2A0

2 9 2 9
-_—\ - L19X 3y L14T93

u = V= .
5 92 2 92
Ly3Loy L13Loy

Applying OPE get:

g(u7 ’U) =LA Z-ﬂ? GAz',f?; (’U,,’U)

\ conformal blocks

~

(oxo=1+(e+€+...)
T o a priori, all fields above unitarity
+((C"W +)\ ) ) bounds are allowed
UV K el
. + ... )

Crossing symmetry constraint:

(087 g(u,v) = uPg(v, u)]
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Allowed vs realized spectrum in 0 x 0 OPE (D=3)

“ “ |
from Unitarity bounds: > D/2—1| > D > D+ 2

? Cuvap

51/60



Theory of conformal blocks in D=3

o “simple” in even dims [Dolan,Osborn,2001]
4

D=4: GA,e(U, U): - — 3 [kA+l(z)k'A—l—2(5) - (Z =t 5)]
: B B
kg(z) = P/, F (2 2316)
- =
Lo — 2
u=z7 v=(1-20-3)| | 7
e 0 - ._ 1 g4 — OO
\ J

e Complicated in odd dims

D=3: GA,O(% v) _ A2 f: [(A/Q)m(A/Q)m+n]2 um(l B U)n

mInl(A+1— 2, (A)amin

m,n=>0

+ recursions for higher spins

D=3 is as complicated as arbitrary D 52/60



Theory of conformal blocks in D=3

e Casimir differential equation [Dolan,Osborn,2003]

Cf X Gai(u,v) = [A(A—-—D)+I(l+ D — 2)|Ga i (u,v)

2nd order part.diff.op. coming from the quadratic Casimir

e Approximate expressions [Hogervorst,S.R.,to appear]

Gae(u,v) ~ TACéD/2_1)(COS a) + few %

(1+ /1 — 2)2

7,632(l! s
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